News
April 20, 2022

3D微流控应用于制造药物纳米颗粒

轴层压混合器
这种同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig

随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D打印技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。

 

视频资料

模拟有机相通过喷嘴和沿着两个混合元件的流线。彩色的水流代表水流的速度。模拟实验来自于Peer Erfle, TU Braunschweig

生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。

在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。

复杂微流控芯片3D打印制作

布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。

高精度3D打印的批量生产

3D打印微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。

微流控元件通过有效混合减少污染

所制造的微流控元件由一个能实现使注入的有机物得到横向拉伸和折叠的3D结构组成。这增加了有机相和水相在流经通道时的界面,加速了两种液体的扩散和混合。同时,有机相的拉伸降低了支流的厚度。这两种效应都能缩短扩散时间,从而提高了混合速度。
由于喷嘴和同轴混合元件的三维流动聚焦,避免了有机相与通道壁的接触。通过这种方式,芯片内的3D打印元件能有效防止污染,而这正是纳米颗粒进行复制、连续和平行生产的主要风险。

如果您想了解更多,欢迎点击并阅读相关完整科学出版物

完整的出版物和其他自于Nanoscribe客户和系统用户的一千多个研究项目的科研出版物都可以通过关键词搜索在高级资源数据库中找到。免费注册并欢迎阅读Nanoscribe的三维微纳加工技术在许多领域的创新应用和基础创新方面的潜力,并评估其对你的项目的适用性

 

登录 Register
联系我们